06.03.2016
10422
1 Star2 Stars3 Stars4 Stars5 Stars (No Ratings Yet)
Загрузка...

Зазор в вентилируемых фасадах: расчеты, пояснения и оспаривание мифа о том, что чем больше зазор, тем лучше.

Пирог из подсистемы и фасадной облицовки

Правильно определённая толщина воздушного зазора и вычисление реальных величин сопротивления теплоотдачи в конструкции гарантируют стабильную нормализацию температурного режима внутри помещения. Также они снижают нагрузку на фасад здания, полученную под воздействием ультрафиолетовых лучей. Именно потому теплофизические свойства очень подробно изучаются и исследуются.

Основные характеристики

Под понятием вентилируемый фасад принято считать конструкции, состоящие из обрешётки, слоя теплоизоляции и облицовочных панелей. В большинстве случаев технология используется при начальном строительстве, а также полной или частичной реконструкции зданий.

Полный расчёт выполняется профессиональными проектировщиками. При этом учитывается расположение объекта недвижимости, а также его характеристики. Например, здание, построенное на открытом участке, будет иметь совершенно другие характеристики по сравнению с тем, которое расположено в черте города.
Главным отличием фасада с вентилируемым воздушным зазором от других систем является присутствие в системе слоя теплоизоляции, металлической подсистемы и облицовочного слоя, который определяет заключительный вид здания. Такие конструкции успешно применяются для теплоизоляции и декоративной отделки многоэтажных зданий, достигающих высоты более 150 метров.

Принцип работы

Движение воздушных масс в пространстве вентилируемых систем осуществляется через входные проушины, расположенные в цокольной части здания. Выход происходит через специальные отверстия в парапете и через русты между облицовочными плитами. Причём минимальный размер диаметра вентиляционных проёмов как для отработанного так и для свежего воздуха должен составлять не более 20 мм. Принцип движения воздуха в навесном фасада

  • При отделке керамогранитом воздушный обмен происходит только через горизонтальные русты;
  • использование композитных материалов позволяет осуществлять вентиляцию через вертикальные.
Важно знать

Движение воздуха в вентилируемых системах должно происходить только с преодолением некоторого сопротивления в виде внутренних отбортовок кассет или плит.

Приоритетные цели

При выполнении расчёта, правильно вычисленная толщина зазора вентилируемой воздушной прослойки позволяет повысить теплозащиту ограждающих конструкций здания с соблюдением хорошего влажностно-температурного режима.
При соблюдении всех рекомендаций при расчётах нормативы должны соответствовать требованиям СНиП 11-3-79 с внесёнными изменениями №3.
Именно поэтому, подробные характеристики тепловой защиты фасадов должны быть рассчитаны и проконтролированы с соответствующим вниманием. К сожалению, не все добросовестно выполняют эти действия, используя в качестве конкретных показаний средние результаты, не соответствующие конкретной ситуации.

Последствия ошибок в расчёте

При неправильном расчёте зазора монтаж вентилируемого фасада будет выполнен с нарушением технологии. Это может привести к разрушению теплоизолирующего слоя (в случае близкого расположения слоя теплоизоляции и облицовочного материала). Впоследствии, это может привести к намоканию и постепенному разрушению основной поверхности стены здания.

Слишком большой воздушный зазор повлечёт за собой звуковые колебания (гул) при сильном ветре, дующем в определённом направлении. Это может произойти при использовании слишком длинных кронштейнов или применения ваты с низкой жёсткостью.

Ещё одной ошибкой может быть использование в качестве утеплителя пенополистирола. Связано это с требованиями по пожарной безопасности строения. Дело в том, что пенопласт очень хорошо горит, несмотря на то, что производитель называет его слабо горючим материалом. При горении выделяется не только вредный дым черного цвета, но и стирол, вызывающий у человека поражения дыхательных органов.
В случае с вентилируемыми конструкциями дело усугубляется тем, что процесс горения быстро распространяется благодаря постоянному притоку и оттоку свежего воздуха под облицовкой поверхности.

Совет от «фасадца»

Поэтому рекомендуется использовать только негорючие виды утеплителя. Такие как минеральная вата и другие ее разновидности.

Монтаж минваты на кронштейны навесной фасадной системы

Расчёты

На данный момент разработана новая схема определения толщины зазора для монтирования качественного вентилируемого фасада. Для её вычисления используется основная характеристика теплозащиты ограждающей системы – это сопротивление теплопередачи, R1. Во время этапа проектирования величина является расчётной и вычисляется уравнением №10 из вышеупомянутого СНиП 11-3-79:

  • R1 = (T1 — T2) / q
    Вентилируемый фасад с отделкой на относе имеет более сложный принцип передачи тепла, чем предусмотренный этой формулой. В данном случае есть уже два участка с отличающимися характеристиками теплопередачи, поэтому вычислять их необходимо по отдельности. Отталкиваясь от этого условия приходится установить двухкомпонентность переноса тепла из зазора через стандартное уравнение:
    R1 = (T1 — T2) / q = R(СНиП) + R(зазора) = R2 * r + R(зазора)
    Слагаемое номер один правой части формулы характеризует тепловую передачу сквозь фасад с теплоизоляцией. Второе – сквозь воздушный заслон и облицовочную поверхность. Если облицовка отсутствует, второе слагаемое удаляется и образуется обычная формула, присущая таким системам:
    R1 = R(СНиП) = R1(усп) * r = ((1 / а) + Z + (1 / а) * r
    В трёх формулах, приведённых выше использованы следующие обозначения
  • T1, T2 – температура воздуха на входе в систему и соответственно на выходе из неё, С
  • q – плотность проникания тепла через систему, Вт/кв.м;
  • R(СНиП) – конкретное сопротивление тепловой передаче системы с теплоизоляцией, которое определяется в соответствии с действующим СНиП 11-3-79, м2 * С/Вт;
  •  r – коэффициенты теплотехнического состояния однородности системы;
  • R (зазора) – эффектное термическое сопротивление воздушного пространства, м2 * С/Вт.

Вычисление зазора

Необходимая толщина воздушной заслонки рассчитывается путём использования значений температуры и скорости движения воздуха в вентилируемом фасаде. Между поверхностью облицовки и утеплителя происходит лучевой теплообмен, который напрямую зависит от температуры. Теплообмен вентилируемых фасадов
Конвективный теплообмен выполняется между основными элементами системы и воздушными массами. Величина характеризуется в прямой зависимости от скорости движения воздушного потока, его температуры и элементов системы.
В свою очередь, скорость воздушных потоков колеблется в зависимости от температуры окружающей среды. А её вычисление происходит путём определения скорости воздушных масс и коэффициента теплового обмена, происходящего в вентилируемом пространстве.
Перечисленные выше взаимосвязи не позволяют выполнить вычисление и разработать непосредственные формулы. Именно поэтому расчёт температуры воздушных масс в вентилируемом фасаде осуществляется только численно-итерационными способами. Воспользовавшись таким методом можно получить все интересующие значения:

  • Температура воздуха в зазоре;
  • Скорость его передвижения внутри системы;
  • Толщина зазора;
  • Коэффициент теплового обмена конструкции.

Результат

Исходя из всего вышеперечисленного можно сделать вывод: теплоизоляционные свойства вентилируемого фасада зависят не только от качества и количества теплоизоляционного материала. Большое влияние на это значение оказывает и правильно рассчитанный и смонтированный зазор, а также ещё один фактор: теплопроводность и количество утеплителя, облицовочного материала, а также кронштейнов.

полезно в работе

Необходимо помнить, что для достижения оптимальных теплоизоляционных характеристик фасадов такого плана является наименьшее количество используемых кронштейнов. При этом величина свободного пространства должна быть как можно меньше (исходя из требований удаления влаги от утеплителя или другим соображениям).

Возможные сложности

Во время составления проекта работ и вычисления величины вентиляционных зазоров могут возникнуть несоответствия, связанные с конструктивными особенностями здания. Например, при выполнении расчётов для отделки строений старых построек, которым уже не один десяток лет, из-за усадки плоскости стен могут возникнуть отклонения от вертикальной и горизонтальной поверхности. Для компенсации этих отклонений применяют специальные удлинители, которые надевают на кронштейн и тем самым регулируют вылет от стены. увеличение вылета кронштейна для обеспечения соответствующего вентилируемого зазора
Соответственно при проектировании необходимо учитывать этот коэффициент и выравнивать поверхность за счёт регулировки вентиляционным зазором. Поэтому создание оптимального расстояния, от паропроницаемой мембраны до поверхности облицовочного материала, применимо не для всех типов строений.

Популярное заблуждение

Распространённое мнение о том, что чем больше расстояние от утеплителя до облицовки, тем лучше – ошибочно. Многие думают, что таким образом на плиты теплоизоляции гарантированно не попадёт влага. Это так, но следует напомнить, конструкция с предельно завышенной величиной пространства воздушной прослойки может начать шуметь при сильных порывах ветра.

Таким образом, вычисления показывают то, что правильной величины относительно расстояния между паропроницаемой защитной мембраной, а также облицовочным слоем достаточно сложная задача. Проектирование таких фасадов требуется выполнять с учётом всех значений и производить все необходимые для этого расчёты теплоизоляционных характеристик конструкции. Только это позволит дать объективную оценку схеме планируемой конструкции, к тому же оно поспособствует усовершенствованию аналогичных систем и позволит удовлетворить все требования касающиеся теплоизоляции здания.

Похожие статьи

возвращает экран к началу